<cite id="1wl75"></cite>
<tt id="1wl75"></tt>

      Kuznetsov's Fano threefold conjectures for quartic double solids and Gushel-Mukai threefolds

      發布者:文明辦作者:發布時間:2020-12-21瀏覽次數:10


      主講人:張詩卓,University of Edinburgh


      時間:2020年12月31日10:00


      地點:3號樓332室


      舉辦單位:數理學院


      內容介紹:It is conjectured that the non-trivial components, known as Kuznetsov components  of derived category of coherent sheaves on every quartic double solid is  equivalent to that of Gushel-Mukai threefolds. I will introduce special  Gushel-Mukai threefold X and its Fano scheme of twisted cubics on it and prove  it is a smooth irreducible projective threefold when X is general and describe  its singularity when X is not general. We will show that it is an irreducible  component of Bridgeland moduli space of stable objects of a (-2)-class in the  Kuznetsov components of the special GM threefolds. I will show that an  irreducible component of Bridgeland moduli space of stable objects of a  (-1)-class in the Kuznetsov component of an ordinary GM threefold is the minimal  model of Fano surface of conics. As a result, we show the Kuznetsov's Fano  threefold conjecture is not true.

      上海福彩网 www.spike123.com:缙云县| www.dayurexian.com:康保县| www.lnwnk.com:新蔡县| www.asiannet21.org:玛多县| www.yiyituofu.com:武威市| www.jasmineevanscoach.com:邻水| www.possn.com:南阳市| www.andcamera.com:巴林左旗| www.coralgablesrealtor.com:张家川| www.221275.com:固镇县| www.alongtheway-mdt.com:疏附县| www.xafkyy120.com:怀宁县| www.legion6.org:绿春县| www.practicalitstrategy.com:黄梅县| www.wmckorea.com:石屏县| www.wh-leadlaser.com:潜江市| www.waunakeeyoga.com:施甸县| www.reward-risk.com:喀喇沁旗| www.the13thgeek.net:肥西县| www.cp55522.com:苏尼特左旗| www.appleidd.com:新泰市| www.viralmusictoolkit.com:六枝特区| www.3gttw.com:东方市| www.allsignsbycos.com:洪湖市| www.rareearthsoil.com:龙海市| www.yhjzsd.com:鄂尔多斯市| www.tjjmy.com:华池县| www.4fsy.com:盐池县| www.yjtqw.cn:广宁县| www.offreznouslolympia.com:桓台县| www.videodownloadming.com:西乌珠穆沁旗| www.chaningtech.com:东乌珠穆沁旗| www.snuhctc.com:东明县| www.xianfenghuashi.com:宕昌县| www.warnarumah.net:涞源县| www.689020.com:通榆县| www.3721waibao.com:浦县| www.ldc-ci.com:永德县| www.ideabridgepromos.com:闵行区| www.valentinesday-poems.com:凤庆县| www.dominatanja.com:高雄市| www.bdyjxm.com:精河县| www.gm445.com:宁河县| www.218101.com:克拉玛依市| www.mfcqk.com:元朗区| www.ybcxjt.com:瑞丽市| www.taralynnfoxxblog.com:长沙县| www.jzdbzz.com:武城县| www.dcpplayer.com:贵南县| www.u-lott.com:淮北市| www.flamwoodvideo.com:嘉荫县| www.022tjhj.com:巫溪县| www.newvilleoutdoor.com:建昌县| www.brushhairandmakeup.com:丰台区| www.myrtlebeachrealestatetips.com:大化| www.pengten518.com:三门县| www.gqfxw.cn:河源市| www.gf665.com:兴仁县| www.hongshunpuyi.com:怀来县| www.sunfar001.com:延津县| www.plasticdaisy.net:贺州市| www.casadelillian.com:扎囊县| www.sharansoft.com:鹤庆县| www.hkbfw.cn:普宁市| www.enxuemi.com:阳东县| www.114767.com:建昌县| www.chcdistribution.com:奉化市| www.heritagehandbag.com:太谷县| www.zybolimian888.com:大兴区| www.gs533.com:庆阳市| www.becaramoscow.com:安远县| www.jmin00.com:思茅市| www.m5687.com:沭阳县| www.world-anime.com:比如县| www.garanit.com:天津市| www.classes2go.com:岑溪市| www.carahedgepeth.com:邯郸县| www.homeworkoutsforseniors.com:长宁县| www.shdingzhu.com:达拉特旗| www.paperswall.net:商洛市| www.823352.com:堆龙德庆县| www.bicaraperpustakaan.com:沙河市| www.spielgeil.com:石家庄市| www.takwed.com:阳朔县|