<cite id="1wl75"></cite>
<tt id="1wl75"></tt>

      Kuznetsov's Fano threefold conjectures for quartic double solids and Gushel-Mukai threefolds

      發布者:文明辦作者:發布時間:2020-12-21瀏覽次數:10


      主講人:張詩卓,University of Edinburgh


      時間:2020年12月31日10:00


      地點:3號樓332室


      舉辦單位:數理學院


      內容介紹:It is conjectured that the non-trivial components, known as Kuznetsov components  of derived category of coherent sheaves on every quartic double solid is  equivalent to that of Gushel-Mukai threefolds. I will introduce special  Gushel-Mukai threefold X and its Fano scheme of twisted cubics on it and prove  it is a smooth irreducible projective threefold when X is general and describe  its singularity when X is not general. We will show that it is an irreducible  component of Bridgeland moduli space of stable objects of a (-2)-class in the  Kuznetsov components of the special GM threefolds. I will show that an  irreducible component of Bridgeland moduli space of stable objects of a  (-1)-class in the Kuznetsov component of an ordinary GM threefold is the minimal  model of Fano surface of conics. As a result, we show the Kuznetsov's Fano  threefold conjecture is not true.

      上海福彩网 www.afashionwonder.com:庆安县| www.csjwa.com:开化县| www.tv680.com:九龙城区| www.nesemancreative.com:博白县| www.cqwjwz.com:永善县| www.how2scuba.com:璧山县| www.planetonegame.com:千阳县| www.0459d.com:屏东市| www.hg85345.com:岳阳市| www.curtisdemarce.com:临安市| www.nbyxkg.com:馆陶县| www.bestkitchenkniveslist.com:麻江县| www.char-o-lotranch.com:宜宾县| www.parametercontraption.com:长泰县| www.david-bird.com:洪雅县| www.headsickpinups.com:SHOW| www.hsbzd.com:南和县| www.chryslermodules.com:平南县| www.cp7721.com:咸丰县| www.paletteblog.com:丁青县| www.hlswclub.com:澄迈县| www.cwwwm.cn:忻城县| www.thilllaw.com:弋阳县| www.sqtextiles.com:二连浩特市| www.crystec.cn:桐城市| www.menkeji.com:吉安县| www.planetonegame.com:正蓝旗| www.13539929392.com:苏尼特右旗| www.bateriaslight-infinity.com:红桥区| www.rh5x.com:淮南市| www.g6552.com:大竹县| www.mfgjn.com:广平县| www.radiolauniversal.com:永顺县| www.smsactivation.com:张家口市| www.supplementpricing.com:明星| www.daogout.com:云和县| www.fapuc.com:溧阳市| www.votextile.com:岑巩县| www.saveattorney.com:麻栗坡县| www.fomrf.org:德州市| www.absabsolutely.com:安多县| www.hand-code-directory.com:延边| www.dengfuwu.com:泽库县| www.xlypw.cn:乃东县| www.seasontip.com:万山特区| www.jasa228.com:台安县| www.rush-it.com:新平| www.d0ob.com:靖安县| www.2eos.com:浪卡子县| www.tswtchkviii.net:通化市| www.chengziw.com:五家渠市| www.yhjzsd.com:娱乐| www.jsahs.com:淮北市| www.cp1107.com:甘孜| www.cp7713.com:横峰县| www.jbenet.com:克拉玛依市| www.rbyco.com:黄梅县| www.comfymassagetable.com:法库县| www.cmwr-xvi.org:海安县| www.clubefarroupilha.com:定安县| www.salon-as.com:彭州市| www.pearlfan.com:潞西市| www.932361.com:神木县| www.youyuejun.com:且末县| www.xtremeracing.net:疏附县| www.pikling.com:荆州市| www.mlrsyu.com:济宁市| www.wwwhg7863.com:竹溪县| www.ahmeterozenci.com:黄山市| www.adonisparadise.com:景德镇市| www.opomart.com:凌源市| www.carousel-ride.com:津南区| www.oklahomatrivia.com:广元市| www.smartmobilelab.com:承德县| www.geofastexpress.com:陇川县| www.game-football.com:平度市| www.truthandrhetoric.com:苗栗市| www.ddplw.cn:曲阳县| www.timphimhay.com:瑞金市| www.in2demo.com:平远县| www.dictionarios.com:定日县| www.ljseducation.com:噶尔县| www.lvvbbe.com:新乡市| www.devrealem.com:木兰县|