<cite id="1wl75"></cite>
<tt id="1wl75"></tt>

      Interpolation and Expansion on Orthogonal Polynomials

      發布者:文明辦作者:發布時間:2020-12-21瀏覽次數:10


      主講人:向淑晃  中南大學教授


      時間:2020年12月21日10:00


      地點:騰訊會議 936 571 594


      舉辦單位:數理學院


      主講人介紹:向淑晃,中南大學二級教授、博士生導師,2006年入選教育部新世紀優秀人才計劃,2011年入選湖南省學科帶頭人培養計劃,2019年4月至今擔任湖南省計算數學與應用軟件學會理事長。主要從事正交多項式逼近的快速、高精度算法以及高頻振蕩問題高效計算與收斂性研究。在SIAM  J. Numer. Anal.、SIAM J. Optimization、SIAM Sci. Comput.、Math. Program A、Numer.  Math.、Math.  Comput.、BIT等國內外核心期刊發表論文100余篇,其中SCI、EI收錄100余篇。主持國家自然科學基金面上項目4項、湖南省自然基金面上項目、湖南省自然基金重點項目、教育部留學基金各1項。2004年獲日本JSPS振興學會資助,日本國立大學弘前大學長期特邀研究員,現為美國《Mathematical  Reviews》、德國《Zentralblatt Math》評論員、湖南省計算數學與應用軟件學會理事長、《Information》雜志編委。


      內容介紹:The convergence rates on polynomial interpolation in most cases are estimated by  Lebesgue constants. These estimates may be overestimated for some special points  of sets for functions of limited regularities. In this talk, new formulas on the  convergence rates are considered. Moreover, new and optimal asymptotics on the  coefficients of functions of limited regularity expanded in forms of Jacobi and  Gegenbauer polynomial series are presented. All of these asymptotic analysis are  optimal. Numerical examples illustrate the perfect coincidence with the  estimates.

      上海福彩网 www.franczyzy.com:小金县| www.idai777.com:亳州市| www.cp1105.com:宝应县| www.attitude-digital.com:永和县| www.mosmedia.net:赣州市| www.apachasdesign.com:平顺县| www.desarmamexico.org:新邵县| www.play-nike.com:麟游县| www.hdy521.com:会泽县| www.ylzttgbus.com:桂林市| www.debian-mirror.com:凤山县| www.thsxled.com:稻城县| www.topgunshops.com:宣汉县| www.sf123cq.com:常熟市| www.lanzengping.com:泊头市| www.2eos.com:益阳市| www.948066.com:忻州市| www.debian-mirror.com:读书| www.xinchenba.com:宁阳县| www.bostonsalist.com:盖州市| www.dianehamburg.com:西充县| www.maizuyupen.com:石景山区| www.editions-nergal.com:石河子市| www.mdhrh.cn:上犹县| www.kinostream.net:长沙市| www.huangdaobb.com:六盘水市| www.healthyrootcanal.org:霍林郭勒市| www.zjg-jintai.com:宜兴市| www.casaladerapv.com:双辽市| www.09323jj.com:巨鹿县| www.scriedespretine.com:河西区| www.donyahost.com:南和县| www.ttjm6898lsc.com:泗洪县| www.china-jjyp.com:昌图县| www.zj-hxjj.com:永宁县| www.sqtextiles.com:临泉县| www.yizhed.com:深泽县| www.magic-ts.com:龙川县| www.jjmatransportation.com:南康市| www.premium-bux.com:乌什县| www.kma209.com:常熟市| www.ceilidhcostello.com:德阳市| www.823352.com:明水县| www.tea778.com:南乐县| www.pret-pas-cher.com:大埔区| www.mq633.com:苗栗县| www.365gxlvyou.com:沈阳市| www.ericagarliebphotography.com:萨嘎县| www.beckymoe.com:紫阳县| www.05ol.com:定边县| www.shhupai.com:云林县| www.wearetsk.com:陇南市| www.dickalerts.com:呼玛县| www.chiemlamdep.com:武清区| www.newclassicsingers.org:丰原市| www.storevalentine.com:教育| www.g9773.com:孝感市| www.499310.com:顺平县| www.mq633.com:罗田县| www.yh14777.com:甘德县| www.cp9396.com:七台河市| www.576478.com:兴义市| www.rbyco.com:荃湾区| www.21toygame.com:岳西县| www.19-2.com:峨眉山市| www.logochargers.com:松滋市| www.datepromocode.com:伊吾县| www.chaobi123.com:明水县| www.olgirl.com:肥城市| www.dracowar-gaming.com:策勒县| www.wewworld.com:偏关县| www.bumibuana.com:南昌县| www.chery-ruixiang.com:钦州市| www.toygrc.com:富阳市| www.yadayang.com:南投市| www.zhugangfamen.com:娄烦县| www.cp1696.com:三都| www.hoyins.com:韶山市| www.alanseptictank.com:莆田市| www.ycmhw.com:佛坪县| www.jwdat.cn:浠水县| www.stevebayer.com:观塘区| www.ericagarliebphotography.com:咸宁市| www.topgunshops.com:清水县|