<cite id="1wl75"></cite>
<tt id="1wl75"></tt>

      Interpolation and Expansion on Orthogonal Polynomials

      發布者:文明辦作者:發布時間:2020-12-21瀏覽次數:10


      主講人:向淑晃  中南大學教授


      時間:2020年12月21日10:00


      地點:騰訊會議 936 571 594


      舉辦單位:數理學院


      主講人介紹:向淑晃,中南大學二級教授、博士生導師,2006年入選教育部新世紀優秀人才計劃,2011年入選湖南省學科帶頭人培養計劃,2019年4月至今擔任湖南省計算數學與應用軟件學會理事長。主要從事正交多項式逼近的快速、高精度算法以及高頻振蕩問題高效計算與收斂性研究。在SIAM  J. Numer. Anal.、SIAM J. Optimization、SIAM Sci. Comput.、Math. Program A、Numer.  Math.、Math.  Comput.、BIT等國內外核心期刊發表論文100余篇,其中SCI、EI收錄100余篇。主持國家自然科學基金面上項目4項、湖南省自然基金面上項目、湖南省自然基金重點項目、教育部留學基金各1項。2004年獲日本JSPS振興學會資助,日本國立大學弘前大學長期特邀研究員,現為美國《Mathematical  Reviews》、德國《Zentralblatt Math》評論員、湖南省計算數學與應用軟件學會理事長、《Information》雜志編委。


      內容介紹:The convergence rates on polynomial interpolation in most cases are estimated by  Lebesgue constants. These estimates may be overestimated for some special points  of sets for functions of limited regularities. In this talk, new formulas on the  convergence rates are considered. Moreover, new and optimal asymptotics on the  coefficients of functions of limited regularity expanded in forms of Jacobi and  Gegenbauer polynomial series are presented. All of these asymptotic analysis are  optimal. Numerical examples illustrate the perfect coincidence with the  estimates.

      上海福彩网 www.gevorkyanphoto.com:杭锦后旗| www.taoyuangarden.com:马鞍山市| www.bljrsizuhs.com:宝坻区| www.tiapark.com:扶余县| www.hg18456.com:龙南县| www.3dbasketballcamp.com:邵阳市| www.hailongju.com:炎陵县| www.kyriakosandkolette.com:栾川县| www.atlanteventuresmezzogiorno.com:沂水县| www.cp7675.com:延边| www.sgillp.com:乐平市| www.cf1000.com:北票市| www.trsnspls.com:南川市| www.400nanchong.com:黔西| www.wfzfcn.com:张家港市| www.perfectskinserum.org:巧家县| www.foxconn371.com:阜阳市| www.pasion4x4rosario.com:贵定县| www.fisting-tube.com:永仁县| www.flying-nerd.com:陇南市| www.polperrocornwall.com:黄骅市| www.mfbcg.com:霸州市| www.jangsuchonaronia.com:海原县| www.kaimasu-online.com:屏山县| www.maranathawichita.com:宜兰市| www.cloud-place.com:黔江区| www.code1220.com:明水县| www.b495.com:红原县| www.jk852.com:喀喇沁旗| www.shaileshsinha.com:剑阁县| www.foothill-bible.org:抚顺县| www.gaindealsnow.com:韶山市| www.jtjdg.cn:博乐市| www.youlanqiu.com:哈尔滨市| www.ocaima.com:龙游县| www.morze-noclegi.com:许昌市| www.findadetoxnow.com:茂名市| www.vivaviralvideo.com:塔城市| www.mmm522.com:白朗县| www.data-track.com:临西县| www.yomuca.com:五常市| www.actcci.com:浦东新区| www.smartmobilelab.com:河津市| www.postnuk.com:万盛区| www.advsignco.com:扬中市| www.ukbmw.com:合江县| www.aapkanpur.com:荆州市| www.mowabike.com:南京市| www.snrtyre.com:贡山| www.kjjdyp.com:荣昌县| www.hongliansy.com:玉环县| www.diaosizz.com:大方县| www.cp7172.com:邢台市| www.grandgreen-energy.com:广安市| www.labodaderafaypaula.com:鄂伦春自治旗| www.dementiaonourminds.com:大荔县| www.boutique-tahitienne.com:大洼县| www.paletteblog.com:潞城市| www.jizxsc.com:阜新| www.dachadian.com:盐山县| www.m5687.com:宁武县| www.twosojourners.com:辽宁省| www.nederlandsefilms.com:阳原县| www.meujp.com:甘肃省| www.525802.com:惠东县| www.webit-key.com:华宁县| www.communitydininghub.com:广河县| www.joikoi.com:武义县| www.cdgyn.cn:新闻| www.seahog004.com:岐山县| www.fedormatsko.com:云梦县| www.xlpww.cn:昂仁县| www.guccibagsfactory.com:甘洛县| www.sujokcenter.com:达拉特旗| www.fnsbx.cn:随州市| www.pengdaclothing.com:灌云县| www.edcvanuatu.com:张家港市| www.aiqinhaiszx.com:平谷区| www.showproducer.net:孙吴县| www.jkfdu.com:涿州市| www.karimjavadi.com:高要市| www.tjhaier-kt.com:辰溪县| www.tianluzaojia.com:海南省| www.cp5517.com:磐安县|